Guest guest Posted June 27, 2004 Report Share Posted June 27, 2004 This is a mechanism of mercury's effects on those with conditions like autism, ADHD, ALS, Alzheimer's, Parkinson's, etc. (snipped) (note: some recommend nitrous oxide use contraindicated in those with mercury exposure due to this effect with mercury) (also: mercury is known to cause increased glutamate activity) Mercury and increased glutamate activate free radical forming processes like xanthine oxidase which produce oxygen radicals and oxidative neurological damage(346,142,13). Nitric oxide related toxicty caused by peroxynitrite formed by the reaction of NO with superoxide anions, which results in nitration of tyrosine residues in neurofilaments and manganese Superoxide Dimustase(SOD) has been found to cause inhibition of the mitochondrial respiratory chain, inhibition of the glutamate transporter, and glutamate-induced neurotoxicity involved in ALS(524,521). Lipoic acid and N-acetylcysteine(NAC) also increase glutathione levels and protect against superoxide radical/peroxynitrite damage, so thus have an additional neuroprotective effect(494a,521,524,572c,54,56). Mercury also blocks the immune function of magnesium and zinc (198,427,43,38), whose deficiencies are known to cause significant neurological effects(461,463). The low Zn levels result in deficient CuZnSuperoxide dismustase (CuZnSOD), which in turn leads to increased levels of superoxide due to toxic metal exposure. This is in addition to mercury’s effect on metallothionein and copper homeostasis as previously discussed(477). Copper is an essential trace metal which plays a fundamental role in the biochemistry of the nervous system(489,495,464). Several chronic neurological conditions involving copper metabolic disorders are well documented like ’s Disease and Menkes Disease. Mutations in the copper/zinc enzyme superoxide dismustase(SOD) have been shown to be a major factor in the motor neuron degeneration in conditions like familial ALS and similar effects on Cu/Zn SOD to be a factor in other conditions such as autism, Alzheimer’s, Parkinson’s, and non-familial ALS (489,495,464,111). This condition can result in zinc deficient SOD and oxidative damage involving nitric oxide, peroxynitrite, and lipid peroxidation(495,496,489,524), which have been found to affect glutamate mediated excitability and apoptosis of nerve cells and effects on mitochondria(495,496,524,119) These effects can be reduced by zinc supplementation(464,495), as well as supplementation with antioxidants and nitric oxide-suppressing agents and peroxynitrite scavengers such as Vit C, Vit E , lipoic acid, Coenzyme Q10, carnosine, gingko biloba, N-acetylcysteine, etc.(237,444,464,494,495,469,521,524,572). Some of the antioxidants were also found to have protective effects through increasing catalase and SOD action, while reducing lipid peroxidations(494a). Ceruloplasmin in plasma can be similarly affected by copper metabolism disfunction, like SOD function, and is often a factor in neurodegeneration(489). References: www.home.earthlink.net/~berniew1/amalg6.html Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.