Jump to content
RemedySpot.com

Article Report - The Tragedy of Needless Pain

Rate this topic


Guest guest

Recommended Posts

The Tragedy of Needless Pain

by

Melzack

Contrary to popular belief, the author says, morphine taken solely to

control pain is not addictive. Yet patients worldwide continue to be

undertreated and to suffer unnecessary agony

----------------------------------------------------------------------------

----

" Pain " as Albert Schweitzer once said, " is a more terrible lord of mankind

than even death itself. " Prolonged pain destroys the quality of life. It can

erode the will to live, at times driving people to suicide. The physical

effects are equally profound. Severe, persistent pain can impair sleep and

appetite, thereby producing fatigue and reducing the availability of

nutrients to organs. It may thus impede recovery from illness or injury and,

in weakened or elderly patients, may make the difference between life and

death.

Sadly, there are some kinds of pain that existing treatments cannot ease.

That care givers can do little in these cases is terribly distressing for

everyone involved but is certainly understandable. What seems less

understandable is that many people suffer not because their discomfort is

untreatable but because physicians are often reluctant to prescribe

morphine. Morphine is the safest, most effective analgesic (painkiller)

known for constant, severe pain, but it is also addictive for some people.

Consequently, it is typically meted out sparingly, if it is given at all.

Indeed, concern over addiction has led many nations in Europe and elsewhere

to outlaw virtually any uses Of morphine and related substances, including

their medical applications. Ever where morphine is a legal medical therapy,

as it is in Great Britain and the U.S., many care givers, afraid of turning

patients into addicts, deliver amounts that are too small or spaced too

widely to control pain.

'Yet the fact is that when patients take morphine to combat pain, it is rare

to see addiction-which is characterized by a psychological craving for a

substance and, when the substance is suddenly removed, by the development of

withdrawal symptoms (for example, sweating, aches and nausea). Addiction

seems to arise only in some fraction of morphine users who take the drug for

its psychological effects, such as its ability to produce euphoria and

relieve tension.

Furthermore, patients who take morphine for pain do not develop the rapid

physical tolerance to the drug that is often a sign of addiction. Many

people who are prone to addiction quickly require markedly escalating doses

to achieve a desired change of mood, but patients who take the drug to

control pain do not need sharply rising doses for relief. They may develop

some tolerance initially, but their required dose usually rises gradually

and then stabilizes.

I do not suggest that morphine be prescribed indiscriminately. I do urge

lawmakers, law-enforcement agencies and health-care workers to distinguish

between the addict who craves morphine for its mood-altering properties and

the psychologically healthy patient who takes the drug only to relieve pain.

Morphine is a constituent of opium, which has been a medical therapy for

longer than 2,000 years, since at least ancient Roman times. Opium is made

by extracting a milky juice from the unripe capsule, or seedpod, of the

poppy Papaver somniferum (grown abundantly in many Middle Eastern countries)

and then drying the exudate to form a gum. This gum-the opium-can be eaten

as is or added to a beverage.

By the 16th century opium was being carried by traders to Europe and the

Orient. At about that time an opium-containing mixture called laudanum

became a popular remedy in Europe for virtually all ailments. Later, smoking

opium and tobacco together became yet another popular way to obtain the

drug's benefits.

Soon after the turn of the 19th century, a young German pharmacist named

Friedrich W. A. Serttimer isolated morphine from opium and identified it as

opium's major active ingredient. Morphine's production was followed in 1832

by the isolation of yet another opiate, or opium derivative: codeine.

In the mid-19th century the introduction of the hypodermic needle made it

possible to administer large amounts of drugs by injection. The standard

approach to morphine therapy for ongoing pain (left) calls for injections

pro re nata (PRN), or " as needed.' In practice this means injections are

given only in response to pain; also, if the pain returns before four to six

hours have passed the patient often has to wait for help. By the time the

next injection is delivered, the pain may be so severe that quite a large

dose is needed, leading to mental clouding and other side effects, such as

nausea. A more enlightened approach (right) seeks the actual prevention of

pain and thus helps ease the fear of recurring agony. The morphine is given

orally (in a dose tailored to the patient's needs) every four hours or even

more frequently if a shorter schedule prevents pain more effectively.

Because the doses are frequent, they typically can be relatively low, which

reduces the incidence of side effects.

Improved technology, which enabled a drug's effects to be felt quickly, led

in many regions of the world to the ready prescription of injected morphine

for severe pain. At the same time, more and more people began taking

morphine for its emotional effects, and the number of addicts rose.

Eventually a search began for drugs that had morphine's analgesic properties

but were not habit-forming. This quest resulted in the production of heroin,

a synthetic compound similar in activity to morphine but soon found,

disappointingly, to be quite as addictive. Various other opioids (chemicals

with activity similar to that of opium) were then introduced, including

methadone and meperidine (Demerol). Like the opiates, many of the opioids

relieve pain, induce changes in mood and, unfortunately, are addictive to

some extent.

Inevitably, the rising abuse of narcotics (by which I mean opiates and

opioids) and of other mood-altering drugs spurred countries throughout the

world to adopt antidrug regulations. At the same time, the extremely

cautious administration of narcotics for pain became commonplace.

Today morphine therapy for pain is generally restricted to two groups of

patients. It is prescribed over relatively short periods for hospitalized

individuals who have discomfort caused by surgical incisions, and it is

given over potentially longer periods to ameliorate the pain suffered by

burn victims or people who have incurable cancer.

In many hospitals the standard prescription order says " PRN " (pro re nata,

or " as needed " ). This order essentially means that the drug is given orLiy

after pain returns. Typically, it is delivered by injection into a muscle or

under the skirt.

The result of the PRN approach is often a confrontation between the patient

and the care giver, who expects morphine analgesia to last for four to six

hours. The patient, whose pain has returned earlier than expected, is in

agony and pleads to have the next injection. The health-care worker, fearful

of causing addiction, refuses to comply. When the pain is finally treated,

it may be so severe that a large dose has to be given, which increases the

likelihood of side effects, such as mental clouding and nausea. Particularly

when a patient has a terminal Illness, the issue of addiction is

meaningless, and delaying relief is cruel.

There is another, more humane way to treat pain, one that is slowly gaining

acceptance. In this approach doses are given regularly, according to a

schedule that has been actually tailored to prevent recurrence of the

individual's pain. Thus, pain is controlled continuously; a patient does not

wait for discomfort to return before receiving the next dose.

This enlightened, preventive approach evolved from pioneering work first

undertaken some 20 years ago by Cicely M. Saunders, an English physician who

established the first modern center devoted to caring for people who are

dying of cancer or other dis. eases: St. 's Hospice in London.

Saunders urged physicians caring for terminally ill Patents to face reality

and palliate-to relieve Pain, nausea and other discomforts instead of making

futile attempts to cure disease. The final days or weeks of a person's life,

she believed, should be a time of peace and comfort, spent as pleasurably as

possible in the company of family and friends.

To achieve this aim, Saunders prescribed the Brompton mixture, a version of

a liquid analgesic that had been used for advanced cancer by several London

hospitals, including the Brompton Chest Hospital, since the late 19th

century. The mixture (made of morphine, cocaine, chloroform water, alcohol

and flavoring syrup) had been eclipsed by injectable morphine, but Saunders

realized that an orally delivered compound would allow many patients to

spend a number of their last days at home; a visiting nurse would simply

monitor them, making sure their pain was controlled.

Morphine has since been found to be the only important ingredient in the

Brompton mixture, and so today patients who are treated with the preventive

approach to pain take morphine alone, either as a tablet or mixed into a

beverage. An initial dose of 10 milligrams is typically given and repeated

every four hours. Then, over the course of perhaps several days or weeks,

the dose and timing are adjusted until a maintenance regimen is established

that controls pain around the clock without producing mental clouding and

other side effects.

For patients who have cancer, an approach emphasizing pain prevention is

particularly wise. Pain and the fear of pain are perhaps their greatest

source of suffering. In the early stages of the disease, some 80 percent of

people have pain resulting from the cancer itself or from the procedures

designed to arrest its spread. By the time the cancer has reached its final

stages, about 70 percent of people report pain, which tends to be intense

and persistent.

About 80 to 90 percent of cancer patients treated with the preventive

approach obtain satisfactory relief, reporting that their discomfort is

consistently bearable or, more frequently, gone. Roughly half of the

remainder obtain relief with the addition of other therapies. This success

rate is remarkable in view of the destructiveness of cancer and the severity

of the pain associated with it.

Treatments continue to improve. There are now special capsules that release

morphine slowly and so need to be taken only a few times a day. Also

available are electronically controlled, portable pumps that deliver a

steady infusion of medication under the skin.

Enough evidence has now been collected to demonstrate that the traditional,

PRN approach, based as it is on the fear of addiction makes little sense.

Study after study of patients whose pain is most often treated with

narcotics-namely, cancer patients, bum victims and those hospitalized for

surgery-has shown that the patients who develop rapid and marked tolerance

to, and dependence on, the narcotics are usually those who already have a

history of psychological disturbance or substance abuse.

Let us first consider the problem of marked tolerance, which not only is a

sign of possible addiction but is also a medical concern in its own right

because the risk of side effects increases as the dose increases. For

instance, delivery of extremely large amounts of morphine can induce coma

and seriously impair respiration.

G. Twycross, now at the Churchill Hospital in Oxford, England, has

shown that relatively little tolerance develops in patients with cancer who

take individually adjusted doses of heroin several times a day over long

periods. The patients developed some tolerance to the drug initially, so

that the doses had to be gradually raised over the first 12 weeks, but pain

relief was achieved without producing serious side effects. Then the doses

held fairly stable for months.

Balfour M. Mount, one of my colleagues at McGill University, and I recently

found similar results when we studied tolerance to morphine in patients who

spent more than a month in the Palliative Care Unit at the Royal

Hospital in Montreal. (This unit, established by Mount, was the first

service for palliative care at a large general hospital.) The patients in

our study, who took the drug by mouth answered a pain-evaluating

questionnaire that I developed with Warren S. Torgerson of s Hopkins

University. The overall intensity of the pain was ranked on a scale ranging

from no pain (0) to pain that is mild (1). Discomfort (2). distressing (3),

horrible (4) or excruciating (5).

About 5 percent of the patients had persistently high pain levels (3 or

higher). The remaining 95 percent had excellent pain control without

requiring rapidly escalating amounts of morphine. Increase in pain, usually

a sign of disease progression after a maintenance program has been

established, was the most common. reason for a rise in dose. Patients who

found that their discomfort had decreased either spontaneously or because of

treatment, such as reduction of a tumor by radiation-usually required less

medication

F. of the Bruyere Health Center in Ottawa also

uncovered little evidence of addiction when he analyzed many studies

examining withdrawal symptoms in patients at cancer-treatment clinics. He

reports that " if a cancer patient no longer requires a narcotic for pain

control, a gradual reduction in dose will prevent any withdrawal symptoms,

although these are usually mild or absent even after abrupt discontinuance. "

Any physical dependence is generally overcome without difficulty when doses

are reduced over a period of days.

A formalin test measures the analgesic (painkilling) effects of medications

on so-called tonic, or persistent pain. A dilute solution of formaldehyde

and saline is injected under the skin of a rat's paw, inducing pain that

lasts for about 90 minutes. The rat licks its paw repeatedly, which is a

sign of moderate pain (a pain rating of 3). Then. after a while, the animal

holds the paw in the air (a rating of 2), steps on it gingerly (a rating of

1) and finally walks normally (a rating of 0). In this test, rats treated

with morphine develop little tolerance to the drug's analgesic effect; that

is, they do not require ever-increasing doses to obtain relief. This finding

is consistent with the results of clinical studies showing that patients who

take morphine for persistent pain do not acquire marked tolerance and do not

become addicted.

Studies of patients who received narcotics while they were hospitalized have

also uncovered little evidence of addiction. In an extensive study Jane B.

Porter and Hershel Jick of the Boston University Medical Center followed up

on 11,882 patients who were given narcotics to relieve pain stemming from

various medical problems; none of the subjects had a history of drug

dependence. The team found that only four of the patients subsequently

abused drugs, and in only one case was the abuse considered major.

Equally persuasive are the results of a survey of more than 10,000 burn

victims. These individuals, who were studied by W. of New York

Hospital and Heidrich of the University of Wisconsin at Madisom

underwent debridement, an extremely painful procedure in which the dead

tissue is removed from burned skin. Most of the patients received injections

of narcotics for weeks or even months. Yet not a single case of later

addiction could be attributed to the narcotics given for pain relief during

the hospital stay. Although 22 patients abused drugs after they were

discharged, all of them had a history of drug abuse.

Further evidence that narcotic drugs can be administered for pain without

causing addiction comes from studies of " patient-controlled analgesia " in

surgical patients and those hospitalized for bums. in such studies patients

push a button on an electronically controlled pump at the bedside to give

themselves small doses of morphine (through an intravenous tube). When these

devices were introduced, there was considerable fear that patients would

abuse the drug. Instead it soon became clear that patients maintain their

doses at a reasonable level and decrease them when their pain diminishes.

Studies that explore how morphine produces analgesia are helping to explain

why patients who take the drug solely to relieve pain are unlikely to

develop rapid tolerance and become addicted. On the basis of such studies,

my former student Frances V. Abbott and I proposed in 1981 that morphine

probably has an effect on two distinct pain-signaling systems in the central

nervous system and that one of these-which gives rise to the kind of pain

typically treated with morphine-does not develop much tolerance to the drug.

Our proposal grew out of my efforts to develop a test in animals that would

accurately determine the effectiveness of analgesic drugs on the kind of

pain most often requiring narcotics in human patients: the prolonged, or

" tonic, " kind that persists long after an injury is suffered. This is the

sort of pain that chronically bedevils cancer patients. When an injury first

occurs, it gives rise to what is called phasic pain, which is brief and

rapidly rises and falls in intensity. (The pain felt the instant a finger is

cut would be called phasic.) Such phasic pain is usually followed by the

tonic kind.

For many years investigators interested in measuring the analgesic effects

of drugs subjected rats to what is called the tail-flick test. After a rat

is injected with a test drug, its tail is immersed in hot water; the time

between immersion and when the rat flicks its tail out of the water is

measured as an index of pain. When morphine's effectiveness was examined

with this test, investigators repeatedly found evidence of marked tolerance:

the animals required ever-increasing doses in order to keep the tail in the

water for a given time. Such results were interpreted to mean that human

patients in pain would readily become tolerant to morphine and so would

become addicted to the drug.

There is a major problem with the tail-flick test, however. It gives rise to

suddenly rising, phasic pain, which is not the kind for which morphine is

usually prescribed. To gain more information about the effects of analgesics

on persistent, tonic pain in humans, O'Keefe, Dubuisson and

G. Dennis, who were then my students, developed what is called the

formalin test. A small amount of formalin-formaldehyde diluted in saline-is

injected under the s1cin of a rat's forepaw. When the animal is not given an

analgesic, the formalin produces moderate pain that lasts for about 90

minutes, as evinced by the animal's tendency to lick the paw and a

reluctance to put weight on it. If a drug soothes the hurt, the animal puts

weight on the paw more quickly.

With the formalin (tonic-pain) test, Abbott and I (later joined at McGill by

our colleague B. J. lin) discovered that rats developed

relatively little tolerance to the analgesia produced by successive

injections of morphine. The most logical explanation for the different

degrees of tolerance found in the tail-flick and formalin tests was that

phasic and tonic pain are invoked by two distinct neural systems that have

differing tolerance to morphine.

Other lines of evidence added support to this idea. For instance, Dennis and

I examined the effect on pain of several drugs that interact with morphine

(or that alter pain in their own right) in both the tail-flick and the

formalin tests. The results were striking. Drug effects that we found in One

test were absent or even reversed in the other. For example, drugs that

reduced morphine analgesia in one test either had no effect or enhanced the

analgesic effect in the other test. if the neural systems that respond to

phasic and tonic pain were one and the same, the effects of the drugs on

morphine's activity should have been identical in both tests.

My colleagues and I think we now know which of the many neural pathways in

the spinal cord and brain constitute the two pain-signaling systems that are

sensitive to morphine. We also know something about their functioning and

how they are affected by morphine. In both systems, information about pain

is delivered to the dorsal horns (wingshaped regions) of the spinal cord by

peripheral neurons emanating from the skin and other body tissues. Ascending

neurons originating in the dorsal horns then relay the pain signals upward

through the spinal cord to various parts of the brain.

The pain-signaling system that my colleague and I think is most associated

with sudden, phasic pain is called the lateral system. The name derives from

the simple fact that the system's tracts, which project to the sensory

cortex, pass through the brain stem at a position to the side of the brain

stem's central core. The system that is probably responsible for persistent,

tonic pain is called the medial system; its tracts pass through the central

core of the brain stem.

Among the more salient properties of the lateral system are the rapid

conduction of impulses and an organization that maps the relative position

of body sites. These properties would enable the system to give rise to

sudden, sharp pain in a readily identified spot in the body. L.

Casey of the University of Michigan at Ann Arbor and I have proposed that

the lateral tracts also account to a great extent for the sensory qualities

of pains, such as throbbing or burning.

The activity of the lateral system is apparently dampened rather quickly,

which would' explain why phasic pain often subsides promptly. The inhibition

is accomplished by a system of neurons that originates in what is called the

periaqueductal gray matter in the part of the brain stem known as the

midbrain. This descending system sends signals downward to the dorsal horns,

where it inhibits the transmission of pain signals from the peripheral

nerves to ascending tracts. After an injury, it is apparently activated by

the body's own optoids (enclorphins and enkephalins). if, as we suggest, the

lateral system carries the signals that give rise to sudden phasic pain,

then it is not surprising that the system is naturally subject to powerful

inhibition. Sudden pain from a newly acquired injury could well overwhelm an

animal, preventing it from fighting, running for cover or burrowing to

escape a predator during an emergency.

The other pain-signaling system the medial system-differs from the lateral

system in many ways. For example, a number of its tracts send impulses to

the limbic system which comprises the subcortical regions of the brain

involved in motivation and affect. Hence, we think the medial system

controls the emotional component of pain, producing qualities one might

describe as wretched, terrifying, vicious and the like. The system also

influences the actions one takes in response to such feelings.

Because the medial system conducts signals relatively slowly through many

small neurons, it is not well suited for providing precise information

during emergencies. Instead it is more suited for producing diffuse,

unpleasant feelings for some time after an injury has occurred. Such

feelings would help ensure that, having survived an immediate threat, a

wounded individual would feel miserable and so remain inactive long enough

to heal.

Where does morphine exert its effects? In both the lateral (phasic-pain) and

the medial (tonic-pain) systems,morphine clearly has some direct effect at

the dorsal horns. It is also well known that morphine can activate the

descending inhibitory system originating in the periaqueductal gray matter.

Abbott and others in my laboratory have found that this descending system

has a greater impact on the lateral system than on the medial system, which

suggests that much of morphine's power over sudden, phasic pain is mediated

by the descending neural tracts.

Two systems of neurons evoke pain: a medial system (pink), which passes

through the central core of the brain stem, and a lateral system (orange).

Both are bilateral, consist of several tracts and relay to higher centers

the pain signals that come into the dorsal horns of the spinal cord. The

medial system Is thought to be most responsible for persistent (tonic) pain.

Because it sends signals to the limbic system of the brain, Which influences

emotions, it is also believed to give rise to the affective component of

pain (reflected by such descriptions as ft frightful " or " cruel " ). The

lateral system is thought to be most active during phasic pain, which is

sudden and sharp. Because it sends signals to the sensory cortex, it

probably gives rise to such sensations as cramping or stinging. Morphine can

inhibit both systems, but the medial (tonic-pain) system develops much less

tolerance to the drug's analgesic effects than does the lateral

(phasic-pain) system-which may explain why patients who take morphine for

persistent (tonic) pain do not develop great tolerance to it. Morphine

produces analgesia in part by inhibiting the flow of pain signals from the

peripheral nerves to the ascending pathways; it acts directly at the dorsal

horns and also activates a descending inhibitory system (blue) that

originates in the midbrain. Morphine also acts at sites above the

periaqueductal gray matter of the midbrain, including the limbic system and

the habenula. which has strong links to both the medial and Umbic systems.

Such activity apparently contributes to the drug's analgesic effect on

persistent pain.

Morphine's analgesic activity certainly is not confined to the dorsal horns

and the midbrain. For instance, strong evidence indicates that morphine acts

on the limbic system, which is known to play a major role in both pain and

pleasure. Such activity could well dampen the pain sensations produced by

the medial (tonic-pain) system, which sends a great many impulses to the

limbic system.

A recent study by S. Robin Cohen, my student, and myself lends additional

support to the idea that morphine's influence over the medial system derives

in part from activity above the midbrain. We injected morphine into the

habenula, a small region of the brain (just behind the thalamus) that has

strong links with the limbic system and a part of the medial system in the

midbrain. The injections produced analgesia in the formalin test but not in

the foot-flick test (similar to the tail-flick test), which suggests that

morphine acts at the habenula and that, when it does, it inhibits the medial

but not the lateral system.

This finding and others indicate that more research should be devoted to

areas above the midbrain if investigators are to gain a fuller understanding

of how morphine eases persistent, tonic pain without inducing tolerance to

repeated doses of the drug.

In view of the complexity of the neural mechanisms of pain, it is not

surprising that morphine's ability to produce analgesia has been found to

vary greatly from person to person. An important message emerging from

studies of such variation is that the need for a high dose is not

necessarily a sign of addiction.

In one such study involving cancer patients, Kaiko, now at the Purdue

Frederick Company in Norwalk, Conn., and Ws colleagues at the Memorial

Sloan-Kettering Cancer Center found that to achieve a given level of

analgesia, less morphine was needed by older patients than by younger

patients, and less was needed by blacks than by whites. Similarly, patients

with dull pain needed less morphine than did those with sharp pain, and

patients with stomach pain needed less morphine than did patients with pain

in the chest or arm.

Genetic factors might also influence an individual's response to the

analgesic power of narcotics, as L. Vaccarino (my student), R.

R. Tasker, now at the University of Prince Island, and I

learned recently when we examined the effects of morphine and its antagonist

naloxone in a strain of mice specially bred for studies of immunologic

function we unexpectedly found that the " antagonist " actually enhanced

morphine analgesia and produced analgesia on its own in rats subjected to

the formahn test. These surprising findings, which so far have been

documented only for this strain of mice, are clearly the result of a genetic

anomaly.

The discovery of a genetic influence on morphine's actions raises the

possibility that susceptibility to addiction might also have a genetic

component in some people. Evidence collected by other groups is consistent

with. that idea, although little work addresses the problem directly.

There is no way to identify patients who might be genetically predisposed to

morphine addiction, but I must emphasize again that a person's psychological

history is indicative of risk. More than 50 percent of narcotics abusers

have had bouts of major depression, and 87 percent have a history of

psychiatric disorder.

Society's failure to distinguish between the emotionally impaired addict and

the psychologically healthy pain sufferer has affected every segment of the

population. Perhaps the most distressing example is unnecessary pain in

children Many health-care workers undertreat pain in youngsters, not only

because of fear of addiction but also because of the mistaken belief that

young children do not feel pain as intensely as adults. In a classic study,

Joann M. Eland and Jane E. of the University of Iowa found in 1977

that more than half of the children from four to eight years old who

underwent major surgery-including limb amputation, excision of a cancerous

neck mass and heart repair-were given no medication for relief of their

postoperative pain; the remainder received inadequate doses. When 18 of the

children were matched with adults who underwent similar procedures, the

children as a group were found to have been given a total of 24 doses of

analgesic drugs, whereas the adults were given a total of 671 doses.

The elderly also pay the penalty of ignorance. In a study of postsurgical

pain my colleagues and I found that surgical wards contain two basic

populations: a young and middle-aged group that recovers quickly and an

older group whose pain remains severe and lingers for many days beyond the

normal three- to four-day recovery period. Despite the persistent, high

level of pain in these older patients (presumably because of complications

that arise after surgery) and despite the longer recovery period, they do

not receive larger doses or a higher daily amount of medication. About 30

Percent of the patients on a surgical ward at any time fall into this older

category; they thus represent a substantial number of people who suffer

needlessly high levels of pain.

The pain suffered by bum victims is known to be agonizing, and yet it too,

tends to be poorly controlled. Manon Choiniare of the Bum Center at the

Hotel Dieu in Montreal and I found that even in the best bum

facilities-those with highly capable, compassionate physicians, nurses,

physiotherapists and others-pain levels are high. Our study of 30

consecutive patients who underwent debridement and physiotherapy (exercise

to prevent loss of joint flexibility) classified the severity of pain on the

basis of the Pain questionnaire I developed with Torgerson. We discovered

that during treatment in the first two weeks, 23 Percent had severe

( " horrible " ) pain, and 30 percent had extremely severe ( " excruciating " )

pain. Even when the Patients were at rest, 13 percent of them reported

having severe pain, and another 20 percent said they had extremely severe

pain. These data, by the way, were obtained from patients who were already

medicated according to standard textbook recommendations (that is, the drug

order said " PRN " ).

For many patients who are hospitalized for surgery or bums or who have

terminal cancer, the prescription is clear: a preventive approach to pain

should be instituted to maximize the effectiveness of narcotics therapy.

What, though, should be done for people who suffer from debilitating chronic

pain but who do not have a fatal illness? These people have traditionally

been excluded from longterm therapy with narcotics, again for fear they

would become addicts.

Consider the case of a 26-year-old athlete who sustained a major spinal

injury that caused him to suffer from excruciating pain in the back and

legs. The pain rendered him unable to work, and he became a burden to

himself, his family and society, which pays his medical bills. His physician

discovered that small doses of morphine taken orally each day (the way

cancer patients receive them) obliterated the pain. With the help of the

medication, the young man resumed working and made plans to marry his

childhood sweetheart, who was accepting of his injury.

One day, however, the physician was accused by his regional medical

association of prescribing narcotics for a purpose unapproved by the

association and of turning the patient into an addict. Fearful of losing his

medical license, the physician stopped prescribing the drug. (Where morphine

administration is allowed by law, physicians can technically prescribe it at

will, but they are in fact restricted by the regulations of medical

societies, which control licensing.)

Of course, the young man's pain returned. In desperation, he turned to other

physicians and was rebuffed. He then sank rapidly into depression and again

became mired in helplessness and hopelessness.

It was once unthinkable to give narcotics indefinitely to patients who were

not terminally ill. Yet studies designed to examine addiction specifically

in such patients are beginning to show that for them, as for the standard

candidates for narcotics therapy, these drugs can be helpful without

producing addiction.

In one recent study K. Portenoy and Kathleen M. Foley of

SloanKettering maintained 38 patients on narcotics for severe, chronic

noncancer pain; half of the patients received opioids for four or more

years, and sixof these were treated for more than seven years. About 60

percent of the 38 patients reported that their pain was eliminated or at

least reduced to a tolerable level. The therapy became problematic in only

two patients, both of whom had a history of drug abuse.

With cautious optimism, Portenoy and Foley suggest that morphine might be a

reasonable treatment for chronic pain in many patients who are not

terminally ill. They point out the problems that may accompany narcotics

maintenance therapy, and they provide careful guidelines for monitoring

patients. Studies such as theirs are doing something in medicine that is

akin in aeronautics to breaking the sound barrier. They represent a

breakthrough to a reasoned, unbiased examination of the effectiveness of

narcotics in patients who have rarely been considered for such therapy.

Among the critics of long-term narcotics therapy for such patients are

physicians and others who fear that people will simply be given a

prescription for a drug and will never receive the advantages of a

multidisciplinary approach to the care of pain. Yet both approaches are

compatible; in fact, they complement each other.

For the future, many more well-controlled studies are needed to provide data

on the long-term effects of narcotics on chronic noncancer pain. At the same

time, medical and government agencies must provide the authorization and

funds for such studies to take place. The goal is nothing short of rescuing

people whose lives are now being ruined by pain.

----------------------

Melzack, who has been studying the neurophysiology of pain for 35

years, is E. P. Professor of Psychology at McGill University and

research director of the Pain Clinic at the Montreal General Hospital. After

earning a Ph.D. in psychology from McGill in 1984 and accepting fellowships

in the U.S. and abroad, he joined the faculty of the Massachusetts institute

of Technology. There, he and D. Wall began discussions that led to

the 196S publication of their now famous ,gate control " theory of pain. He

returned to McGill in 1963. This is his third article for Scientific

American.

Link to comment
Share on other sites

Join the conversation

You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...